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LE'ITER TO THE EDITOR 

Attenuation of a multimode field due to two-photon 
absorption 

U Mohr and H Paul 
Zentralinstitut fur Optik und Spektroskopie, Akademie der Wissenschaften der DDR, 
DDR-1199 Berlin, Rudower Chaussee 6 ,  East Germany 

Received 3 August 1978 

Abstract. Starting from an effective Hamiltonian describing the interaction of a multimode 
field with a two-photon absorber, an equation of motion for the quantised slowly varying 
field amplitude is derived which exhibits a memory effect due to the finite atomic linewidth. 
Averaging this equation, as a whole, over the memory time leads to a single-mode 
formalism, thus providing a basis for the physical interpretation of the conventional 
one-mode treatment of two-photon absorption, especially with respect to the photon 
antibunching phenomenon. In particular, a precise physical meaning can be attributed to 
the mode volume. 

In recent years, the change in photon statistics due to multiphoton absorption has 
become an object of several theoretical studies (see e.g. Tornau and Bach 1974, McNeil 
and Walls 1974, Simaan and Loudon 1975, Bandilla and Ritze 1975, Paul eta1 1976). 
The most interesting result is that such a process may produce, at least in principle, 
photon antibunching, as expressed by the relation 

Here A is the mean value and An2 the mean-square deviation for the photon number. 
The definite value of the constant a depends on the type of process. For two-photon 
absorption we have a = 5 for the asymptotic state of the field which is attained after 
sufficiently strong absorption (Paul et a1 1976), and a = f for the final steady state when 
A = 4 (cf. Simaan and Loudon 1975). 

From equation (1) it becomes obvious that the antibunching effect can be observed 
only at low values of ii (say A 5 100). Now equation (1) has been deduced in the 
single-mode formalism, i.e. A refers to the mode volume, and the question, left open in 
the literature, arises as to how this volume is defined physically. In the following we 
shall try to give an answer. 

Our procedure consists of deriving the commonly used single-mode formalism, as 
an approximate scheme, from general equations describing the interaction between a 
two-photon absorber and a multimode field. (The generalisation to k-photon absorp- 
tion, where k = 3,4,  . . . , is straightforward.) We consider a light beam travelling in the 
x direction and coherent over its cross section. The absorption cell is homogeneously 
filled with atoms capable of two-photon absorption. Then the problem is essentially 
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one-dimensional (with respect to space). We start from the following effective inter- 
action Hamiltonian (cf. Shen 1967): 

Here a i  and a,  denote the raising and lowering operators, respectively, for the kth 
atom located at x,, E(-) is the negative-frequency part of the operator for the electric 
field strength, ko is the wavenumber at the centre frequency w0, and 77 is the coupling 
constant. We take into account inhomogeneous as well as homogeneous line broaden- 
ing, i.e. we ascribe to an individual atom both a resonance frequency a, (with respect to 
two-photon absorption) and a homogeneous linewidth 2y. 

From the formal point of view it is desirable to consider the atomic operators-like 
the field operators-as continuous functions in space. Doing so, we rewrite the 
interaction Hamiltonian (2) as 

L 

Hi,, = h c lj 5 dx ,??-'2(x)ai(x) + h.c. 
i o  

(3) 

where the subscript j has been used to distinguish between groups of atoms which differ 
by their resonance frequencies a,. The dependence of the new coupling constant f;. on j 
reflects the decrease in the number of atoms in the j th group with the growing deviation 
of flj from the line centre. Taking into account only those modes of the field which 
propagate strictly in the (positive) x direction, we find the commutator for the field 
operators to be 

[&'"(XI), &'-)(x2)] = -2.rrihcs'(xl -x2) +2.rrhwos(xl - x 2 )  (4) 

where 6' is the derivative of Dirac's delta function, and c is the velocity of light. The 
commutator for the atomic variables, on the other hand, reads 

[a: (xl), a j (xdl= ai(xl)6(xl -x2) ( 5 )  
where aj(x) is the inversion density associated with the group j .  In the following, we 
shall approximate aj(x)  by -1, thus neglecting saturation effects. 

From equations (3)-(5) we obtain the equations of motion in the Heisenberg picture 
which, after separation of the high-frequency time dependence of the operators, take 
the following form: 

(6) 

(7) 

if (x, t )  = i(Ri - 2oo)a'f(x, t )  - ya'f (x, I )  + ili,!?)2(x, t )  +fT ( x ,  t )  

(alar + c  a/ax)E"-'(x, t )  = 4.rrihwo l T ~ f  (x, t)E(+)(x, t )  
i 

where 

E ( - ) ( x ,  t )  = exp(-iwot)&)(x, t )  = exp[i(kox - wot)l~'- ' (x,  t )  

L(x, t )  = exp(2iwot)a(x, t )  

(8) 

(9) 
and WO is the centre frequency for the field whose doubled value is assumed to coincide 
with the atomic line centre. 

In equation (6) a damping term characteristic of homogeneous line broadening 
(linewidth 2y) together with a fluctuating (Langevin) force f i  (x, t )  ensuring quantum- 
mechanical consistency have been introduced in a familiar manner (see e.g. Lax 1966). 
In the derivation of the interaction term of equation (7) only the dominant second term 
on the right-hand side of equation (4) has been taken into account. 
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Integrating equation (6) and substituting the result into equation (7) gives us 

(alar + c a/ax)J??'(x, t )  

+E'(x, t ) E ( + ) ( x ,  t )  

where 

E + ( x ,  t )  = 47rihwo ,$ J exp{[i(fli - 2w0) - y](r - t ' ) } f l  (x, t ' )  dt'. 
i -m 

Here we have assumed the inhomogeneous line to be of Lorentzian shape (linewidth 
2r), i.e. we have replaced 

C ILi12 - by 
i 

in equation (10). Since the right-hand side of equation (10) contains temporal averages 
(the weighting function being (r+ y )  exp[-(r+ y ) ( t  - t')]), it appears natural to subject 
equation (lo), as a whole, to the same averaging procedure. The result can be written in 
the approximate formt 

(alar + c  a/ax)@-)(x, t )  = -4.rrhw0p(r+y)-1$(-)2(~, t ) @ + ) ( ~ ,  t )  +E+(x, t)g(+)(X, t )  
(12) 

where 

zp(*)(x, t )  = (r + 7 )  I f  exp[- (r + y ) ( t  - t ' ) ] ~ ( * ) ( x ,  t ' )  dt'. (13) 
-m 

The commutator relation for the averaged electric field strength is easily calculated to 
be 

t ) ,  $(- ) (x ,  t ) ]  = + ?). (14) 

4 = [Thko( r+  Y ) ] - ' / ~ @ + ) ,  4' = [ d i k o ( r  + y)]-1/2@-) (15) 

Obviously the operators 

obey the correct commutation relation for the familiar photon creation and annihilation 
operators. Hence rewriting equation (12) as 

(16) (a/a7)4'(6, 7) = -P4+2(& 7)4(5, 7) +E'(& 7 )d (& 7) 

(e  = X - C f ,  7 = f ,  P = (277h)2WOkOp) 

we finally arrive at an equation of motion for a single 'mode'. In contrast to the 

t Strictly speaking, the approximate replacement of (r+ y )  5'- exp[ - (r + y ) ( t  - t ' ) ]8 ' - '2 (x ,  t') dt' by 
@)'(x, I )  is not correct when the contributions from all modes (including those which remain in the vacuum 
state during the interaction) are considered. Physically, it seems reasonable, however, to take into account 
only those modes which are actually affected by the atoms (either modes present in the incident field and 
experiencing attenuation due to the atoms, or modes originally in the vacuum state and growing up to some 
extent in the course of interaction). If we assume the linewidth of the incident field Ao to be smaller than 
y + r, we may restrict ourselves to those modes whose frequencies o obey the inequality 10 - ool y + r. In 
this way the above mentioned replacement can be justified. 



L46 Letter to the Editor 

conventional ab initio single-mode formalism, however, our analysis yields a physical 
definition for the mode volume. In fact, comparing the relation 

(@+@) = (8(-W+))/ .rrhko(r + y )  (17) 

following from equations (15) with the corresponding equation in the single-mode 
treatment, we find the dimension of the mode volume, in the direction of beam 
propagation, to be 2c(T+ y)- ' .  

To show the definite correlation with the conventional treatment of two-photon 
absorption we mention that equation (16) yields precisely the same equation of motion 
for the expectation value of any product of photon creation and annihilation operators 
as does the density matrix formalism commonly used. (Note that in the case of normally 
ordered products the term E'@ gives no contribution, owing to the fact that the 
expectation value for any normally ordered product of the fluctuating forces f l , h  
vanishes.) 

Finally, let us discuss two physically important cases. 
(i) Entirely homogeneous line broadening (r = 0). Assuming the linewidth of the 

incident field Au to be smaller than y, we arrive at the conclusion that it is not the 
coherence time (Am)-' but the smaller dephasing time (2y ) - l  which determines what 
has to be taken as the mode volume. Similarly, considering a field travelling in a ring 
resonator, it is legitimate to identify the mode volume appearing in the single-mode 
treatment of two-photon absorption with the resonator volume only when the round- 
trip time does not exceed the dephasing time. 

Our result is in accordance with the following simple, intuitive picture based on 
Einstein's original concept of localised light quanta. An individual atom can absorb a 
pair of photons only during a time interval in which the field interacts coherently with 
the atom. Hence, in an elementary absorption process, the temporal 'distance' between 
the two photons involved cannot exceed the dephasing time. Therefore intensity 
correlations characteristic for antibunching, as they are produced by the absorber in 
favourable circumstances, can exist between two times tl  and t2 (at fixed x )  only if 

(ii) Strong inhomogeneous line broadening (r >> A u  >> y ) .  The linewidth of the field 
Au is larger than y. Since only those atoms whose resonance frequencies obey the 
inequality laj - 2u0l d Au can experience absorption, it appears reasonable to take into 
consideration only the effective part of the inhomogeneous linewidth reff = Au. Then 
the mode volume, apart from a factor 2, is equal to the coherence volume. In this case 
the coherent interaction of an individual atom with the field terminates because the 
phase of the field changes in a random manner when a time of the order of the coherence 
time has elapsed. 

I t1 - t 2 l d  (2y)- ' .  
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